
Positive maps, positive polynomials and entanglement witnesses

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2009 J. Phys. A: Math. Theor. 42 325302

(http://iopscience.iop.org/1751-8121/42/32/325302)

Download details:

IP Address: 171.66.16.155

The article was downloaded on 03/06/2010 at 08:03

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/42/32
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 42 (2009) 325302 (14pp) doi:10.1088/1751-8113/42/32/325302

Positive maps, positive polynomials and entanglement
witnesses

Łukasz Skowronek1 and Karol Życzkowski1,2
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Abstract
We link the study of positive quantum maps, block positive operators and
entanglement witnesses with problems related to multivariate polynomials.
For instance, we show how indecomposable block positive operators relate to
biquadratic forms that are not sums of squares. Although the general problem
of describing the set of positive maps remains open, in some particular cases we
solve the corresponding polynomial inequalities and obtain explicit conditions
for positivity.

PACS numbers: 03.67.Mn, 02.10.Xm

1. Introduction

The set of positive maps acting on a finite-dimensional Hilbert space is a long-standing
subject of mathematical interest. In spite of many efforts (see [1–5] and references therein),
the structure of this set in spaces of arbitrary dimension is still not well understood. Of
particular interest are positive maps, which are not completely positive [6–8]. The theorem
of Jamiołkowski implies [2] that any such map can be represented by an operator, acting on a
bi-partite Hilbert space, which is not positive, but is block-positive.

Non-completely positive maps recently attracted considerable attention amongst the
physics community [9–11]. Positive maps have mainly been studied in view of their possible
application to characterize quantum entanglement [12] and in connection with entanglement
witnesses [13–16]. An entanglement witness is a Hermitian operator W such that Tr(Wσ) � 0
for any separable state σ , while the negativity of Tr(Wρ) implies that the state ρ is entangled.
Note that a Hermitian operator W may be considered as an observable, so the expectation
value Tr(Wρ) can be measured in an experiment [17]. From a mathematical perspective any
entanglement witness is a block positive operator which is not positive.

In the present paper we aim to clarify the relation between positive maps and positive
polynomials. Definitions and basic information can be found in section 2. In section 3, we
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explore the link between positive maps and positive polynomials and we address problems
related to early contributions on the subject. In particular, we analyze implications of the
work of Jamiołkowski [18, 19] and show why the results of these papers do not allow one to
formulate a conclusive test for the positivity of a given map.

On the other hand, in some particular cases such results can be obtained. In sections 4
and 5, we investigate two families of maps and working with the corresponding polynomials
we find explicit conditions for positivity. Furthermore, we demonstrate how positive maps
relate to the existence of positive polynomials which are not sums of squares and we formulate
an open problem concerning entanglement witnesses in (2 × m)-dimensional spaces.

2. Block positivity—motivation and definitions

Let H1,H2 be finite-dimensional spaces over C, both equipped with Hermitian inner products
(dimH1 = N1, dimH2 = N2). Let L(H1) denote the algebra of linear operators on H1. We
denote with L(H1)

+ the set of positive elements of L(H1). A linear map � : L(H1) → L(H2)

is called positive if and only if it maps elements of L(H1)
+ to elements of L(H2)

+. It is well
known [2] that the set of positive maps is isomorphic to the set of block positive operators
(block positive over C). Therefore, instead of asking whether a given map is positive, in this
work we will be concerned with the equivalent question of whether the corresponding operator
is block positive, so that it can serve as an entanglement witness.

A Hermitian operator A on H = H1 ⊗H2 is called block positive over C if it satisfies the
following condition

〈u ⊗ v| A(u ⊗ v)〉 � 0 ∀u∈H1,v∈H2 . (1)

Note that condition (1) is not invariant with respect to global unitary transformations on H, so
this definition depends on the particular form of the decomposition of H.

It will also be useful to introduce the concept of block positivity for real linear spaces.
Let X and Y be finite-dimensional vector spaces over R (dim X = M1, dim Y = M2). Let A

be a linear operator on X ⊗ Y . In analogy to (1), we say that A is block positive over R if it
satisfies

(x ⊗ y) · A(x ⊗ y) � 0 ∀x∈X,y∈Y . (2)

Condition (2) does not imply symmetry of A, but we may always assume that A is symmetric
because the antisymmetric part of A in (2) vanishes. Thence (X ⊗ Y )2 � (w1, w2) 	→
w1 · A(w2) ∈ R is a symmetric bilinear form on X ⊗ Y .

In index notation, condition (2) reads

Aab,cdx
aybxcyd � 0 ∀{xa}M1

a=1,{yb}M2
b=1⊂R

, (3)

where xa and yb are the coordinates of x and y with respect to the orthonormal bases
{ei}M1

i=1, {fj }M2
j=1 of X, Y (resp.) which we use.

Obviously, (3) is a positivity condition for a real multivariate polynomial of degree 4. If
the polynomial Aab,cdx

aybxcyd is a sum of squares (SOS) of some other polynomials Pi , then
we must have

Aab,cdx
aybxcyd =

∑
i

P 2
i =

∑
i

(
Bi

abx
ayb

)2
, (4)

where the real coefficients Bi
ab (a = 1, . . . ,M1, b = 1, . . . ,M2) are arbitrary and the range

of the index i is finite.
Indeed, the polynomials Pi must be homogeneous and of degree 2. They cannot have

terms of the form xaxb, neither of the form yayb, since there are no terms (xaxb)2 nor (yayb)2
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in the sum Aab,cdx
aybxcyd . Thus we conclude that if Aab,cdx

aybxcyd = ∑
i P

2
i for some

polynomials Pi , then Pi = Bi
abx

ayb. But (4) looks just like a quadratic form on X ⊗ Y ,
written in the product basis {ei ⊗ fj }M1,M2

i=1,j=1. It is tempting to say that (4) implies positive
semidefinitness of A, but this is not true. Nevertheless, a similar result can be proved if we
assume that A is symmetric with respect to partial transpose, Aτ := (11 ⊗ T )A = A, where T
denotes the transposition. Putting this in a different way, A should satisfy

(x1 ⊗ y1) · A(x2 ⊗ y2) = (x1 ⊗ y2) · A(x2 ⊗ y1) ∀x1,x2∈X,y1,y2∈Y . (5)

For any operator A being a SOS and expressed by equation (4), we may define the
following operator Ã:

Ãab,cd = 1

2

(∑
i

Bi
abB

i
cd + Bi

adB
i
cb

)
. (6)

It is easy to see that (x ⊗y) · Ã(x ⊗y) = (x ⊗y) ·A(x ⊗y) for all x ∈ X, y ∈ Y . In Appendix
A we show that this property together with (5) and (6) implies Ã = A. But Ã is of the special
form (6), which we did not assume about A. More precisely, Ã is proportional to a sum of a
semipositive definite operator B with matrix elements

∑
i B

i
abB

i
cd and its partial transposition

Bτ with matrix elements
∑

i B
i
adB

i
cb. We conclude that Aab,cdx

aybxcyd = ∑
i P

2
i implies

A = 1
2 (B + Bτ ), B � 0 (7)

for the operators A with the property (5). A Hermitian operator A is called decomposable
[1, 3] iff A = C + Dτ , where C,D � 0. When (5) holds, one can easily prove that (7) is
equivalent to decomposability of A. Thus we arrive at the following conclusion.

Proposition 1. Let X, Y be finite-dimensional linear spaces over R. Let W be the set
of blockpositive, indecomposable operators on X ⊗ Y which are symmetric with respect to
transposition and partialtransposition. Denote with P the set of positiverealpolynomials of the
form Aab,cdx

aybxcyd which are notSOS. There is a linear isomorphism between W and P .

Proof. The isomorphism in question is � : W � A 	→ Aab,cdx
aybxcyd ∈ P .

We still need to show that � is one-to-one. To this end, we assume the equality∑
a,b,c,d Aab,cdx

aybxcyd = ∑
a,b,c,d Bab,cdx

aybxcyd for some operators A,B ∈ W . Choose
some a, c ∈ {1, 2, . . . ,M1} , b, d ∈ {1, 2, . . . , M2}. Considering the coefficients at xaybxcyd

in the two polynomials, we obtain Aab,cd + Aad,cb = Bab,cd + Bad,cb. Thanks to the partial
transpose symmetry of A and B, we get A = B. This tells us that � is injective. On the
other hand, every polynomial of the form Aab,cdx

aybxcyd is an image by � of the partial
transpose symmetric operator 1

2 (A + Aτ ). The operator 1
2 (A + Aτ ) must be an element of W

for Aab,cdx
aybxcyd to be an element of P (cf the discussion above). Thus we conclude that

� is surjective. �

It was demonstrated by Choi [6] and Størmer [20] that there exist positive maps which
are not decomposable. The example by Choi can easily be used to show that there exist,
by proposition 1, positive polynomials of the form Aab,cdx

aybxcyd which are not SOS [6].
Proposition 1 gives a general motivation to investigate block positive operators over R on
account of their connection to sums of squares. It may also be expedient to study the real
case in order to develop intuitions about block positivity over C. It should, however, be kept
in mind that (1) and (2) are not the same. Despite an apparent similarity, the block positivity
over C should not be perceived as a simple generalization of the block positivity over R. In

3
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general both definitions of block positivity do not coincide, what can be demonstrated by the
following example of a real symmetric matrix:

A =

⎡
⎢⎢⎣

1 0 0 − 1
2

0 1 3
2 0

0 3
2 1 0

− 1
2 0 0 1

⎤
⎥⎥⎦ . (8)

This matrix represents an operator on C
2 ⊗ C

2 written in the standard product basis,
{|00〉, |01〉, |10〉, |11〉}. It is easy to show that A satisfies inequality (2), but it does not
satisfy condition (1). Hence the matrix A in (8) is block positive over R, but is not block
positive over C. Moreover, when considering operators with unit trace, one can easily show
that the set of such block positive operators over C is compact whereas block positivity over
R does not imply compactness. In spite of this basic difference between the two notions of
block positivity, there exist families of matrices for which conditions (1) and (2) turn out to be
equivalent—see section 4.

3. Block positivity and quantifier elimination

Although the block positivity condition (1) is simple to understand, it does not seem easy to
check. The early papers by Jamiołkowski [18, 19] suggest that the problem can be solved
effectively. Even though this conclusion is in some sense true, we show a weak point of the
argument presented in these papers.

For convenience of the reader, let us recall the details of the reasoning presented in [18].
First, we write condition (1) in index notation,

Aαβ,γ δū
αv̄βuγ vδ � 0 ∀{uα}N1

α=1,{vβ }N2
β=1⊂C

. (9)

Next, we introduce blocks,(
A(1)

v

)
αγ

:= Aαβ,γ δv̄
βvδ,

(
A(2)

u

)
βδ

:= Aαβ,γ δū
αuγ . (10)

We can interpret them simply as matrices or as operators on H1 and H2, respectively. Block
positivity condition (9) can be rewritten as

A(1)
v � 0 ∀v∈H2 or as A(2)

u � 0 ∀u∈H1 , (11)

where ‘�’ refers to semipositive definiteness. We shall concentrate on the right-hand side of
(11). Semipositivity of A(2)

u is equivalent to the following set of inequalities,

Wl(u) :=
∑

1�i1<i2<...<il�N2

�i1i2...il

(
A(2)

u

)
� 0 ∀u∈H1∀l=1...N2 , (12)

where �i1i2...il

(
A(2)

u

)
is the minor of A(2)

u involving the columns and the rows with the numbers
i1, . . . , il . It follows from the discussion in [18] that the functions Wl are homogeneous real
polynomials of an even degree in the variables {Re (uα)}N1

α=1 , {Im (uγ )}N1
γ=1. Thus (12) is a

set of positivity conditions for real homogeneous polynomials of an even degree. If we could
solve these conditions explicitly, we would answer the question whether a given matrix is
block positive.

That was the idea presented in [18] by Jamiołkowski, who suggested considering∑
i1,i2,...,in

Ci1i2...inX
i1
1 X

i2
2 . . . Xin

n (Ci1i2...in ∈ R) as a polynomial in the variable Xn with
coefficients in R[X1, . . . , Xn−1]. He obtained positivity conditions for such a polynomial
in a disjunctive normal form,

∀{x1,...,xn−1}⊂R

∨
i

∧
j

Di
j (x1, . . . , xn−1) � 0, (13)
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where Di
j ∈ R[X1, . . . , Xn−1]∀i,j . Because the same procedure could be applied to any of

the Di
j ’s (considered as elements of R[X1, . . . , Xn−2][Xn−1]), it was claimed that the number

of variables in (13) can be iteratively reduced so as to yield quantifier free formulae. The
problem with this argument is that equation (13) does not turn out to be equivalent to∨

i

∧
j

∀{x1,...,xn−1}⊂RDi
j (x1, . . . , xn−1) � 0, (14)

so one cannot use the procedure iteratively.
To the best of our knowledge, no simple method is known to check the positivity of a

general multivariate polynomial. It is in principle possible to eliminate quantifiers [21] from
formulae such as ∀{x1,...,xn−1}⊂R

∑
i1,i2,...,in

Ci1i2...inx
i1
1 . . . xin

n � 0, but the outcome involves zeros
of univariate polynomials of an arbitrary high degree, which cannot in general be expressed
in terms of the coefficients of the polynomials. The known quantifier elimination procedures
are laborious and should not be expected to provide a constructive solution to the problem.
Thus we have to conclude this section by repeating the accepted statement that the question
of explicit conditions for block positivity remains open.

4. A three-parameter family of block positive matrices

Fortunately, there exist some particular cases for which positivity conditions (12) turn out to
be useful in checking block positivity. Let a, b, c ∈ C. Consider the following family of
matrices,

F =

⎡
⎢⎢⎣

F00,00 F00,01 F00,10 F00,11

F01,00 F01,01 F01,10 F01,11

F10,00 F10,01 F10,10 F10,11

F11,00 F11,01 F11,10 F11,11

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
2 a 0 0
ā 1

2 b 0
0 b̄ 1

2 c

0 0 c̄ 1
2

⎤
⎥⎥⎦ , (15)

which represent operators on H1 ⊗ H2 = C
2 ⊗ C

2.
We are going to test condition (1) using the method suggested in the previous section.

The blocks (10) with respect to the subsystem described by H2 are

F (2)
u (a, b, c) =

[
1
2 (|u1|2 + |u2|2) a|u1|2 + c|u2|2 + b̄u1ū2

ā|u1|2 + c̄|u2|2 + bū1u2
1
2 (|u1|2 + |u2|2)

]
. (16)

Obviously, F (2)
u (a, b, c) is semipositive definite for all u ∈ C

2 if and only if det F (2)
u (a, b, c) �

0 ∀u∈C2 . That is,(
1
2 (|u1|2 + |u2|2)

)2 − |a|u1|2 + c|u2|2 + b̄u1ū2|2 � 0 ∀u1,u2∈C. (17)

Keeping |u1| and |u2| constant, we can maximize the absolute value of the term a|u1|2 +
c|u2|2 + b̄u1ū2 by choosing the phases of u1 and u2 such that the phase of b̄u1ū2 is the same
as the phase of a|u1|2 + c|u2|2. So done, we see that condition (17) is equivalent to(

1
2 (x2 + y2)

)2 − (|ax2 + cy2| + |b|xy)2 � 0 ∀x,y∈R+ . (18)

In inequality (18), we substituted x for |u1| and y for |u2|. It is now easy to see that (18) is the
same as

1
2 (x2 + y2) − |ax2 + cy2| − |b|xy � 0 ∀x,y∈R. (19)

We extended the domain of x, y in (19) to R, which is permissible because |b|xy does not
increase if we change the sign of x or y from plus to minus. Substituting x → r cos ϕ

2 , y →
r sin ϕ

2 in (19) we obtain

1 − |α + γ cos ϕ| − |b| sin ϕ � 0 ∀ϕ∈R, (20)

5
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where α := a + c, γ := a − c. Condition (20) can easily be solved in the two following
situations:

(a) Re(αγ̄ ) = 0 ⇐⇒ |a| = |c|
(b) Re(αγ̄ ) = ±|α||γ | ⇐⇒ a = rc, r ∈ R.

In case (a), condition (20) simplifies to

1 −
√

|α|2 + |γ |2 cos2 ϕ − |b| sin ϕ � 0 ∀ϕ∈R. (21)

We observe that |α|2 + |γ |2 � 1 must hold in order that (21) be true. Keeping this in mind, we
can rewrite (21) as∣∣∣∣ b

γ

∣∣∣∣
2

λ2 − λ +

(
1 −

∣∣∣∣ b

γ

∣∣∣∣
2 (|α|2 + |γ |2)

)
� 0 ∀

λ∈[|α|,
√

|α|2+|γ |2]
, (22)

where we substituted
√

|α|2 + |γ |2 cos2 ϕ → λ. As a positivity condition for a quadratic
function, (22) can easily be solved explicitly. Together with the condition on |α|2 + |γ |2, we
obtain

|α|2 + |γ |2 � 1 ∧ |α| + |b|2 � 1 ∧ {
2|b|2|α| � |γ |2 ∨ 2|b|2

√
|α|2 + |γ |2 � |γ |2}, (23)

which is an equivalent form of (22). In case (b), it is even simpler to get the conditions on
α, γ and b equivalent to (20). We have |α + γ cos ϕ| � |α| + |γ || cos ϕ|. Either for ϕ or
for ϕ → π − ϕ, we obtain |α + γ cos ϕ| = |α| + |γ || cos ϕ| and sin ϕ is not changed by the
substitution ϕ → π − ϕ. Hence we can rewrite (20) as

1 − |α| − |γ || cos ϕ| − |b| sin ϕ � 0 ∀ϕ∈R. (24)

This is equivalent to (1−|α|−|γ | cos ϕ −|b| sin ϕ) � 0∀ϕ∈R, which is easy to solve explicitly
in terms of α, γ and b. We obtain

1 − |α| −
√

|γ |2 + |b|2 � 0. (25)

In the case of general a, b and c, condition (20) is equivalent to the following system of four
inequalities,

(1)

|α| + |γ | � 1, (26)

(2)

|γ |2 − |b|2 � |Re(αγ̄ )|, (27)

(3) ∣∣1 − |α|2 − |γ |2∣∣ � 2|Re(αγ̄ )|, (28)

(4)

(|γ |2 + |b|2)2 cos4 ψ − 4(|γ |2 + |b|2)Re (αγ̄ ) cos3 ψ

+ (4 Re (αγ̄ )2 − 2(1 − |α|2 − |b|2)(|γ |2 + |b|2) − 4|γ |2) cos2 ψ

− 4(3 − |α|2 − |b|2)Re (αγ̄ ) cos ψ + (1 − |α|2 − |b|2)2 − 4|α|2 � 0, (29)

which have to be satisfied for all real ψ = 2ϕ. The expression on the left-hand side of
condition (iv) is a polynomial P(cos ψ) of degree 4 in the variable cos ψ . This condition
means that P is nonnegative in the interval [−1, 1]. Given particular values of a, b and c,
non-negativity of P in [−1, 1] can easily be checked using the Sturm sequences [22]. It is also

6
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Figure 1. The gray set of positive semidefinite matrices defined by equation (30) is contained
inside the set of block positive matrices determined by (25). In this case the block positivity over
C is equivalent to the block positivity over R. It is assumed here that a, b, c ∈ R, but formulae
(24) and (25) apply also for a, b, c complex, provided that a = rc with r ∈ R.

possible to produce general conditions on a, b, c in this way, but the resulting formulae would
be too complicated to reproduce them here and not suitable for further analysis.

An analogous problem of block positivity over R can also be solved for the family of
matrices (15). Most of the work has already been done above. We only need to observe
that the passage from (17) to (18) is possible also when a, b, c and u1, u2 are real numbers.
This is true because the maximal value of

∣∣a|u1|2 + c|u2|2 + bu1u2

∣∣ for fixed |u1|, |u2| is∣∣au2
1 + cu2

2

∣∣ + |b||u1||u2|. Thus the condition (18) turns out to be equivalent to block positivity
over R of the matrices of the form (15) with a, b, c ∈ R. Later analysis follows as in the case
(b) discussed above. In this way we arrive at two important conclusions. First, symmetric
matrices of the form (15) are block positive over R if and only if they are block positive over
C. Second, the block positivity condition takes the form (25) with α = a + c, γ = a − c. On
the other hand, positivity conditions for the family of matrices (15) are easily obtained:

1

16
− |a|2

4
− |b|2

4
− |c|2

4
+ |a|2|c|2 � 0 ∧ 1

2
− |a|2 − |b|2 − |c|2 � 0. (30)

We can compare them with the block positivity condition (25) in a picture.
It is clear from figure 1 that conditions (30) and (25) are not equivalent, and the set of

positive matrices of the family (15) forms a proper subset of the set of block positive matrices.
A similar investigation can be performed for a related family of matrices,

E(s, p, q, r) =

⎡
⎢⎢⎣

1
2 s 0 r

s 1
2 p 0

0 p 1
2 q

r 0 q 1
2

⎤
⎥⎥⎦ , (31)

with real parameters s, p, q and r. The block positivity conditions for E(s, p, q, r) can be
obtained using the methods presented in this section. In particular, taking E

(
a, b

2 , c, b
2

)
with

a, b, c real, we get a symmetrization of the family (15)

F ′(a, b, c) := F(a, b, c) + F(a, b, c)τ

2
=

⎡
⎢⎢⎣

1
2 a 0 b

2

a 1
2

b
2 0

0 b
2

1
2 c

b
2 0 c 1

2

⎤
⎥⎥⎦ . (32)

7
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Deriving conditions for positivity and block positivity of the matrices F ′(a, b, c), it turns out
that in this case both properties do coincide, unlike in the example discussed above. In the
light of proposition 1, this fact can be understood as a consequence of the following theorem
[23].

Theorem 2 (Calderón). Let m ∈ N, x1, x2 ∈ R, {yj }mj=1, {Aabcd}a,b,c,d ⊂ R

Aabcdx
aybxcyd � 0∀x1,x2,{yj }mj=1

�⇒ Aabcdx
aybxcyd =

∑
i

(
Bi

abx
ayb

)2
. (33)

That is, any positive biquadratic form in 2 × m variables is the sum of squares of quadratic
forms.

According to proposition 1 and Calderón’s result, any operator A on X⊗Y ∼= R
2 ⊗R

m which
is symmetric with respect to partial transpose and block positive over R, is decomposable
as well. More than that, we know from the discussion preceding proposition 1 that A can
be written in the form (B + Bτ )/2 with B � 0. In the case of A = F ′(a, b, c), B must
be of the form (31) with s = a, q = b and p + r = b. As can be checked by direct
computation, the characteristic polynomials of E(s, p, q, r) and E(s, r, q, p) are the same.
It follows that E � 0 ⇔ Eτ � 0, which in turn leads us to the conclusion that the matrix
F ′ = 1

2 (F + F τ ) = 1
2 (E + Eτ ) is block positive if and only if it is positive.

To explain our observation about F ′, we could also have used the Størmer–Woronowicz
theorem [1, 3], which implies that an operator A on R

2 ⊗R
2 (or on R

2 ⊗R
3) is block positive

if and only if it is decomposable. This suggests a possible connection between the Calderón
and the Størmer–Woronowicz theorems. On the other hand, the first theorem holds for all
R

2 ⊗ R
m (m ∈ N) whereas the latter works for m � 3 only.

The theorem of Calderón allows us to find some further implications for the subject of
positive maps.

Proposition 3. Let m ∈ N. Either all block positive operators on C
2 ⊗ C

m with realmatrices
are decomposable or there exists an operator A on C

2 ⊗ C
m with real matrix elements Aab,cd

such that Aab,cdx
aybxcyd is the sumofsquares of bilinear forms, but A is not decomposable.

Proof. Let A be an operator on C
2 ⊗ C

m with real matrix elements. If A is block positive
on C

2 ⊗ C
m, it must be block positive on R

2 ⊗ R
m. From Calderón’s theorem it follows that

Aab,cdx
aybxcyd is the sum of squares of bilinear forms. If this implies decomposability of A,

any block positive operator on C
2 ⊗ C

m with real matrix elements is decomposable. If not,
there exists an indecomposable operator A such that Aab,cdx

aybxcyd is SOS. �

Both the mutually exclusive possibilities in proposition 3 are interesting and it will be good
to know which of them is true for which m (of course, the answer is known for m = 1, 2, 3—
every positive map is decomposable). We hope that stronger results of similar kind can also be
obtained and they should give better insights into the structure of positive and indecomposable
maps.

5. Block positivity of 4 × 4 matrices over R

We want to illustrate the abstract discussion presented in section 3 with a concrete example.
To that aim, following [25], we derive sufficient and necessary conditions for an arbitrary
operator A on R

2 ⊗ R
2 to be block positive. Let the matrix elements of A be Aab,cd

(a, b, c, d ∈ {1, 2}). The blocks with respect to the first subsystem have the matrix elements(
A(1)

y

)
ac

= Aa1,c1(y
1)2 + (Aa1,c2 + Aa2,c1)y

1y2 + Aa2,c2(y
2)2. Positivity of A(1)

y is equivalent

8
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to the requirements that TrA(1)
y � 0 and det A(1)

y � 0. Non-negativity of the trace of A(1)
y for

all y = (y1, y2) ∈ R
2 means that

2∑
i=1

Ai1,i1(y
1)2 +

2∑
j=1

(Aj1,j2 + Aj2,j1)y
1y2 +

2∑
k=1

Ak2,k2(y
2)2 � 0 ∀y1,y2∈R. (34)

Obviously, (34) is a positivity condition for a quadratic form on R
2 and we can write it

explicitly as

2∑
i,j=1

Aij,ij � 0 ∧
2∑

i=1

Ai1,i1

2∑
k=1

Ak2,k2 − 1

4

⎛
⎝ 2∑

j=1

(
Aj1,j2 + Aj2,j1

)⎞⎠
2

� 0. (35)

The expression for the determinant of A(1)
y reads

det A(1)
y = c4x

4 + c3x
3z + c2x

2z2 + c1xz3 + c0z
4, (36)

where we substituted x for y1, z for y2 and we introduced

c0 = A12,12A21,21 − A11,21A21,11, (37)

c1 = A22,22(A12,11 + A11,12) + A12,12(A22,21 + A21,22)

−A22,12(A12,21 + A11,22) − A11,21(A22,11 + A21,12), (38)

c2 = A11,11A22,22 + A21,21A12,12 + (A11,12 + A12,11)(A21,22 + A22,21)

−A11,21A21,11 − A12,22A22,12 − (A11,22 + A12,21)(A21,12 + A22,11), (39)

c3 = A11,11(A21,22 + A22,21) + (A11,12 + A12,11)

−A11,21(A21,12 + A22,11) − A22,12(A11,22 + A12,21), (40)

c4 = A11,11A21,21 − A11,21A21,11. (41)

The ci’s are homogeneous polynomials in the matrix elements Aab,cd . It is easy to see that
non-negativity of (36) for all x, z ∈ R is equivalent to

c4x
4 + c3x

3 + c2x
2 + c1x + c0 � 0 ∀x∈R. (42)

Thus we showed that in the case of a symmetric matrix A of order 4 condition (3)
is equivalent to (35) plus (42). The inequalities (35) are explicit conditions on the matrix
elements Aab,cd , but in (42) we need some additional work to dispose of the quantifier ∀x∈R.
There is no single method of doing it, but the one which seems most economical to us is using
the following theorem [24].

Theorem 4 (Sturm). Let f = f0 be a real univariate polynomial with no multiple roots in R.
Let f1 be the first derivative of f . Define

fn+1 := rem (fn−1, fn), (43)

where rem (h, g) is the remainder obtained when dividing h by g. Define N (r) as the number
of sign changes in the sequence

f0 (r), f1 (r),−f2 (r),−f3 (r), f4 (r), f5 (r),−f6 (r), . . . (44)

with zeros skipped. Assume α, β ∈ R, α < β, f0 (α) �= 0 and f0 (β). The number of zeros of
f0 in the interval (α, β) equals N (α) − N (β),

N (α) − N (β) = # {r ∈ (α;β)|f (r) = 0} . (45)

9
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The sequence of functions (43) is the same as in Euclid’s algorithm applied to f and f ′. When
the signs are changed as in (44), the sequence is called the Sturm sequence of f . We know
that {fn}n=0,1... must terminate at some fm ∈ R\ {0}, which is the greatest common divisor of
f and f ′. If we go to the limits α = −∞, β = +∞ in theorem 4, we easily obtain the number
of real roots of f .

Corollary 5. Let f = f0 be a real univariate polynomial with no multiple roots in R and f1

its first derivative. Let fn(n = 2, 3 . . .) be defined like in (43) and assume

fn (r) = an,kn
rkn + an,kn−1r

kn−1 + · · · + a0,n, (46)

where kn � 0, an,kn
�= 0 ∀n. Denote with N (+∞) the number of sign changes in the sequence

a0,k0 , a1,k1 ,−a2,k2 ,−a3,k3 , a4,k4 , . . . ,±am,km
(47)

and with N (−∞) the number of sign changes in

(−)k0a0,k0 , (−)k1a1,k1 , (−)k2+1a2,k2 , (−)k3+1a3,k3 , (−)k4a4,k4 , . . . ,±am,km
. (48)

The number of real zeros of f equals N (−∞) − N (+∞),

N (−∞) − N (+∞) = # {x ∈ R|f (x) = 0} . (49)

Let us take for f the polynomial c4x
4 + c3x

3 + c2x
2 + c1x + c0 which appears in (42). We

shall now assume that it has no multiple roots in R. Then we can use Corollary 5 to check the
positivity of f .

The sequence {fn}n=0,1,... consists of at most five polynomials,

f = f0 = c4x
4 + c3x

3 + c2x
2 + c1x + c0,

f1 = 4c4x
3 + 3c3x

2 + 2c2x + c1,

f2 = a2,2x
2 + a2,1x + a2,0, (50)

f3 = a3,1x + a3,0,

f4 = a4,0.

If we make an additional normality assumption, which says that the degrees of f0, . . . , f4 drop
one by one in the successive lines of (50), it is easy to write the positivity conditions for f ,

c4 > 0 ∧ (a2,2 > 0 ∨ a3,1 > 0) ∧ a4,0 > 0. (51)

The expressions for a2,2, a3,1 and a4,0 can also be easily obtained in the present situation. We
obtain

a2,2 = 1

16c4
σ1, a3,1 = 32c4

σ 2
1

σ2, a4,0 = − σ 2
1

64c4σ
2
2

σ3, (52)

where

σ1 := c2c4 − 3c2
3, (53)

σ2 := c1c
3
3 − 14c1c2c3c4 − c2

3

(
c2

2 − 6c0c4
)

+ 2c4
(
2c3

2 + 9c2
1c4 − 8c0c2c4

)
, (54)

σ3 := c1
(
2c1

2 − 9c0c2
)
c3

3 + 2c1c3c4
(−9c1

2c2 + 40c0c2
2 + 96c0

2c4
)

+ c0
2c3

4 + c3
2
(−c1

2c2
2 + 4c0c2

3 + 6c0c1
2c4 − 144c0

2c2c4
)

+ c4
(
4c1

2c2
3 + 27c1

4c4 + 128c0
2c2

2c4 − 256c0
3c4

2 − 16c0c2
(
c2

3 + 9c1
2c4

))
. (55)

According to (52), the normality assumption is equivalent to c4 �= 0∧σ1 �= 0∧σ2 �= 0∧σ3 �= 0.
If these conditions hold, we can rewrite (51) as

c4 > 0 ∧ (σ1 > 0 ∨ σ2 > 0) ∧ σ3 < 0. (56)

10
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This is an explicit condition for f to be positive. Of course, it was obtained under the
assumption that {fn}4

n=0 are normal. Nevertheless, we can use (56) as a starting point for an
all-purpose non-negativity test for polynomials of degree less than or equal to four. Indeed,
suppose that the sequence {fn}4

n=0 is not normal. That is, at least one of the numbers
c4, σ1, σ2, σ3 happens to be zero. If c4 = 0, the non-negativity question becomes trivial. We
get that c3x

3 + c2x
2 + c1x + c0 is non-negative if and only if

c3 = 0 ∧ c2 � 0 ∧ c2
1 − 4c2c0 � 0. (57)

The case in which c4 �= 0 but σ1σ2σ3 = 0 can be analyzed using a little more sophisticated
techniques (see Appendix B). All in all, we arrive at the following non-negativity conditions
for f ,

{c4 > 0 ∧ (σ1 � 0 ∨ σ2 � 0) ∧ σ3<̇0}
∨ {

c4 = 0 ∧ c3 = 0 ∧ c2 � 0 ∧ c2
1 − 4c2c0 � 0

}
, (58)

where σ3 <̇ 0 means ∃ξ>0∀ξ ′<ξ

(
σ3(c4, c3, c2, c1, c0 + ξ ′) < 0

)
. We can write σ3<̇0 explicitly

as

σ3 < 0 ∨ (σ3 = 0 ∧ (κ1 < 0 ∨ (κ1 = 0 ∧ κ2 � 0))), (59)

where

κ1 = 4c2
3c

3 − 18c3
3c2c1 + 80c4c3c

2
2c1 + 6c4c

2
3c

2
1 − 16c4c2

(
c3

2 + 9c4c
2
1

)
, (60)

κ2 = 27c4
3 − 144c4c

2
3c2 + 128c2

4c
2
2 + 192c2

4c3c1. (61)

Obviously, conditions (58) and (35) together with the definitions (59), (60), (61), (53), (54),
(55), (37), (38), (39), (40) and (41) provide us with a method to test block positivity over
R of 4 × 4 matrices. We see that lengthy calculations are involved, even though the studied
example is the simplest possible one. It is also clear that the iterative procedure proposed in
[18] could not work with conditions such as (56), let alone (58).

6. Conclusions

We have re-examined the method [18] of establishing the positivity of a map with the help of
multivariate polynomials and we conclude that in the general case this problem remains open.
The same can be said about the equivalent problem of checking whether a given operator
acting on a composite Hilbert space is block positive. Nevertheless, for certain family of
operators checking the positivity of the associated polynomials allowed us to find a concrete
criterion for block positivity. Such concrete examples are provided in sections 4 and 5. By
giving example (8), we touched upon the relation between the block positivity conditions over
C and over R.

We also outlined connections between block positivity, indecomposability and the sums
of squares (propositions 1 and 3, theorem 2). Proposition 3 opens a discussion about the two
mutually exclusive possibilities concerning indecomposable maps on C

2 ⊗ C
m (cf section 4).

Finally, we tried to show that polynomials, which have been thoroughly studied by
mathematicians and engineers, may deserve more respect of physicists working on quantum
information or on open quantum systems. In particular, the separability problem itself can
be formulated as a set of polynomial equalities [26]. Techniques like the calculation of a
Gröbner basis of an ideal are widely used to solve polynomial equations and they could be of
importance in physical problems such as the separability problem.
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Appendix A. Equality between operators Ã and A

Consider the symmetric bilinear forms � : (X ⊗ Y )2 � (w1, w2) 	→ w1 · A(w2) ∈ R, �̃ :
(X ⊗ Y )2 � (w1, w2) 	→ w1 · Ã(w2) ∈ R. We know that �(x ⊗ y) = �̃(x ⊗ y) for arbitrary
x ∈ X, y ∈ Y . From (5) and (6) it follows that �, �̃ are symmetric with respect to partial
transposition,

�(x1 ⊗ y1, x2 ⊗ y2) = �(x1 ⊗ y2, x2 ⊗ y1), (A.1)

�̃(x1 ⊗ y1, x2 ⊗ y2) = �̃(x1 ⊗ y2, x2 ⊗ y1). (A.2)

Let us choose x ∈ X and consider the following maps, �x : Y 2 � y 	→ �(x ⊗ y1, x ⊗ y2) ∈
R, �̃x : Y 2 � y 	→ �(x ⊗ y1, x ⊗ y2) ∈ R. From (A.1) and (A.2) we know that �x, �̃x

are symmetric bilinear forms on Y. As a consequence of �(x ⊗ y) = �̃(x ⊗ y),�x(y, y) =
�̃x(y, y) for arbitrary y ∈ Y . Hence the quadratic forms corresponding to � and �̃ are equal.
This implies �x = �̃x , so we obtain

�(x ⊗ y1, x ⊗ y2) = �̃(x ⊗ y1, x ⊗ y2) ∀x∈X,y1,y2∈Y . (A.3)

Now we consider the maps �y1,y2 : X2 � (x1, x2) 	→ �(x1 ⊗ y1, x2 ⊗ y2), �̃y1,y2 : X2 �
(x1, x2) 	→ �̃(x1 ⊗ y1, x2 ⊗ y2). From the symmetry of �, �̃ and the properties (A.1),
(A.2), we see that �y1,y2 , �̃y1,y2 are symmetric bilinear forms on X. As a consequence of
(A.3), �y1,y2(x, x) = �̃y1,y2(x, x) for all x ∈ X. This implies �y1,y2(x1, x2) = �̃y1,y2(x1, x2)

for arbitrary x1, x2 ∈ X. In this way we get �(x1 ⊗ y1, x2 ⊗ y2) = �̃(x1 ⊗ y1, x2 ⊗
y2)∀x1,x2∈X,y1,y2∈Y , which is the same as

(x1 ⊗ y1) · A(x2 ⊗ y2) = (x1 ⊗ y1) · Ã(x2 ⊗ y2) ∀x1,x2∈X∀y1,y2∈Y . (A.4)

Of course, (A.4) implies A = Ã.

Appendix B. Non-negative polynomials with σ1σ2σ3 = 0 and c4 �= 0

Our aim is to figure out all the sign configurations of c4, σ1, σ2, σ3 such that they meet
the constraints c4 �= 0 ∧ σ1σ2σ3 = 0 and they correspond to nonnegative polynomials
f = c4x

4 +c3x
3 +c2x

2 +c1x
1 +c0. We also have to check that the remaining sign configurations

can never give a non-negative f . Of course, c4 < 0 implies that f (x) be negative for some
x, so we only need to consider c4 positive. First we show that σ3 > 0 cannot happen for a
non-negative f . Suppose σ3 > 0. We know that σ1 = 0 or σ2 = 0. Let us first consider
σ1 = 0. Because σ1 = 8c2c4 − 3c2

3 and c4 > 0, we can increase c2 by ε > 0 and get σ1 > 0
for sure. If σ2 turns out to be zero after this operation, we additionally increase c0 by ξ > 0,
which must give us σ2 �= 0 because σ2 = σ̃2 − 2c0c4σ1 where σ̃2 does not depend on c0. The
numbers ε, ξ can be made arbitrarily small, so as not to influence the sign of σ3. Hence we
see that f + εx2 + ξ has a normal Sturm sequence and it does not satisfy (56) because σ3

corresponding to f + εx2 + ξ is positive. But f + εx2 + ξ �> 0 implies f �� 0, so f cannot

12
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be non-negative. We conclude that f � 0 is impossible for c4 > 0, σ3 > 0 and σ1 = 0. For
c4 > 0, σ3 > 0 and σ2 = 0, we only need to increase f by a sufficiently small ξ to get to the
conclusion f �� 0. Our observations mean that σ3 > 0 always implies f �� 0. Let us now
consider the polynomials f for which conditions

c4 > 0 ∧ (σ1 = 0 ∨ σ2 = 0) ∧ σ3 < 0. (B.1)

are satisfied. If σ1 vanishes, we can get σ1 > 0 by increasing c2 (c2 → c2 +ε). If σ2 turns out to
be 0 afterwards, any change of c0 (c0 → c0 + ξ) will give us σ2 �= 0 (cf the discussion above).
We can take ε and ξ arbitrarily small, which allows us to avoid changing the sign of σ3. After
all, we get a polynomial f + εx2 + ξ which has a normal Sturm sequence and it is positive
since c4 > 0 ∧ σ1 > 0 ∧ σ3 > 0 for the corresponding c4, σ1 and σ3. Because ε and ξ can
arbitrarily be small, we see that f is a pointwise limit of a sequence of positive polynomials.
Hence f is non-negative. The same conclusion can be drawn for c4 > 0, σ1 �= 0, σ2 = 0 and
σ3 < 0, so we should add (B.1) to our set of non-negativity conditions. We can write (B.1)
and (56) as a single condition,

c4 > 0 ∧ (σ1 � 0 ∨ σ2 � 0) ∧ σ3 < 0. (B.2)

The only situation which is left to analyze is that of σ3 = 0. To that end, let us write σ3 as a
polynomial in c0,

σ3 = κ3c
3
0 + κ2c

2
0 + κ1c0 + κ0, (B.3)

where

κ0 = −c2
3c

2
2c

2
1 + 4c4c

3
2c

2
1 + 4c3

3c
3
1 − 18c4c3c2c

3
1 + 27c2

4c
4
1, (B.4)

κ1 = 4c2
3c

3 − 18c3
3c2c1 + 80c4c3c

2
2c1 + 6c4c

2
3c

2
1 − 16c4c2

(
c3

2 + 9c4c
2
1

)
, (B.5)

κ2 = 27c4
3 − 144c4c

2
3c2 + 128c2

4c
2
2 + 192c2

4c3c1, (B.6)

κ3 = −256c3
4. (B.7)

Because of the assumption c4 > 0, we know that σ3 is not constant with respect to c0. The
idea now is to infinitesimally increase c0 and see what the outcome is. If σ3 becomes positive,
we conclude that f �� 0. If it turns out to be negative (we denote this with f <̇ 0), we go back
to the initial values of ci and ask about the signs of σ1, σ2. If σ1 > 0, we choose ξ > 0 so
small that σ1 > 0 holds when we increase c0 by ξ . Then (B.2) is true for f + ξ , so f + ξ is
non-negative. Since the ξ in f + ξ can be made arbitrarily small, we get f � 0. If σ1 = 0,
we increase c0 by ξ to get σ3 < 0 and then we increase c2 by ε so as to get σ1 > 0 and not to
violate σ3 > 0. After that (B.2) holds for f + εx2 + ξ and again we get to the conclusion that
f � 0. Therefore we can add

c4 > 0 ∧ σ1 � 0 ∧ σ3 <̇ 0 (B.8)

to our list of non-negativity conditions for f . Now we only need to analyze the case
c4 > 0 ∧ σ1 < 0 ∧ σ2 � ∧σ3 <̇ 0 to finish our work. If σ2 > 0, we choose ξ > 0 so
small that the σ2 corresponding to f + ξ is also positive. Then f + ξ > 0 and we get
f � 0. The case σ2 = 0 is also simple to analyze. Because σ1 < 0, increasing c0 causes
σ2 = σ̃2 − c4c0σ1 to become positive, so we get σ2 > 0 ∧σ3 < 0 for f + ξ and again this leads
us to f � 0. Thus we can add

c4 > 0 ∧ σ1 < 0 ∧ σ2 � 0 ∧ σ3 <̇ 0 (B.9)

to our non-negativity conditions for f . It is convenient to write (B.2) and (B.8) in a single
formula,

c4 > 0 ∧ (σ1 � 0 ∨ σ2 � 0) ∧ σ3 <̇ 0. (B.10)
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Because of the particular form (B.3) of σ3, we explicitly write the condition σ3 <̇ 0 as

σ3 < 0 ∨ (σ3 = 0 ∧ (κ1 < 0 ∨ (κ1 = 0 ∧ κ2 � 0))), (B.11)

since condition c4 > 0 implies that κ3 < 0.
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